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SUMMARY 

A new finite volume (FV) approach with adaptive upwind convection is used to predict the two-dimensional 
unsteady flow in a square cavity. The fluid is air and natural convection is induced by differentially heated 
vertical walls. The formulation is made in terms of the vorticity and the integral velocity (induction) law. 
Biquadratic interpolation formulae are used to  approximate the temperature and vorticity fields over the 
finite volumes, to  which the conservation laws are applied in integral form. Image vorticity is used to  enforce 
the zero-penetration condition at  the cavity walls. Unsteady predictions are carried sufficiently forward in 
time to reach a steady state. Results are presented for a Prandtl number (Pi-) of 0 7 1  and Rayleigh numbers 
equal to to3, lo4 and lo5. Both 11 x 11 and 21 x 21 meshes are used. The steady state predictions are 
compared with published results obtained using a finite difference (FD) scheme for the same values of P r  and 
Ra and the same meshes, as well as a numerical bench-mark solution. For the most part the FV predictions 
are closer to the bench-mark solution than are the FD predictions. 
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INTRODUCTION 

In a recent article by the authors' a new finite volume approach to solving two-dimensional 
viscous flow problems was presented. This approach incorporates several ideas which have been 
developed and used separately by numerical fluid dynamicists over several decades. However, up 
to the present time they have not been unified into a single and consistent formulation. The new 
algorithm was developed for steady flows and was applied to two different problems for which 
there are known exact solutions. The discretization errors were found to be quite small, even 
when the flow trajectories were inclined steeply to the co-ordinate axes and relatively coarse 
meshes were used. 

These encouraging results have prompted the authors to apply the method to an unsteady 
viscous flow with sufficient complexities that a fair test of the formulation can be made. Towards 
this end, we have chosen to analyse the unsteady flow in a square cavity with differentially heated 
vertical walls. The top and bottom surfaces of the cavity are insulated. De Vahl Davis' has 
developed a bench-mark numerical solution for the steady state flow in this geometry. Thus a set 
of standard results exist for comparison purposes, at least in the steady state. The extension of our 
finite volume method to unsteady buoyancy-induced flows together with the results of the 
numerical predictions for this test problem are the subject of the present paper. 
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We will discuss the previous related works on this test problem subsequently. However, first we 
present an overview of our numerical approach. The fomulation begins with the integral 
conservation laws applied to a mesh, the boundaries of which define discrete control volumes 
within the fluid. This is not a new idea and is often the starting point of control volume 
formulations which incorporate finite difference methods3 The fluid properties transported by 
the flow are evaluated at single points located interior to the control volumes. We refer to these as 
‘volume points’. The velocity variables are evaluated at points on the mesh (i.e. control volume 
boundaries). Thus we have a staggered mesh, which also is not a new feature of the method. We 
refer to these points on the mesh simply as ‘mesh points’. The transported properties (i.e. energy, 
vorticity, etc.) are approximated over the volumes by biquadratic interpolation functions applied 
to a nine-node stencil. The velocity variables are approximated over the mesh boundaries by 
quadratic interpolation functions. The order of both sets of interpolation functions is sufficient to 
allow accurate evaluation of the variables and their first derivatives over suitably small mesh 
intervals. The appropriate transport terms in the integral conservation laws are next evaluated 
and the results integrated over the control volumes in order to obtain discretized versions of the 
governing flow equations. 

There is a remote similarity between the above-described approach and the finite element 
method, particularly as regards the use of interpolation functions. It is for this reason that we 
classify it as a finite volume rather than a control volume approach. Although the exact origin of 
the finite volume method is unknown to the authors, some researchers give credit for introducing 
the basic idea to MacCormack and Warming.4 Neither the term ‘finite volume’ nor the particular 
algorithm described in the foregoing paragraph can be found in their paper. Rather, procedures 
are discussed for treating three-dimensional supersonic inviscid flows. Additional citations to 
finite volume computations of compressible inviscid flows can be found in Reference 1. 

In viewing these previous works which use the finite volume method, it is obvious that a great 
deal of flexibility can be exercised in placing the node points inside and on the suricices of control 
volumes. They are not usually staggered and often are located at intersection points (rather than 
interior points) of the mesh. Also it does not appear to be a requirement that interpolation 
functions be used to represent the field variables over the mesh.5 Thus the method seems to lack 
the kinds of conventions so evident in the finite element and finite difference methods. 

A distinguishing feature of the particular finite volume approach used here, and described in 
Reference 1, is the treatment of the convective transport of the fluid properties (i.e. the advection 
terms). We use a scheme which is in the category of ‘smart upwinding’. Specifically, the 
transported property is taken to be a volume average of the quantity obtained over a region 
which is not congruent with a control volume of the mesh, but which is nevertheless located 
upstream of the one to which the conservation laws are being applied locally. The shape of this 
region is irregular and depends on the flow trajectory as well as the strength of the convection. It 
is adaptive to local flow conditions, which can change with space and time. 

Upstream-weighted schemes for treating convective transport are controversial and can 
produce deleterious effects in flow computations. Specifically, it is well known that they introduce 
numerical (or false) diffusion, as has been documented by many authors (see e.g. References 6-10). 
Nevertheless, upwind methods are still in use because of their stabilizing influence on the 
numerical calculations. Furthermore, it is the opinion of the authors that in some situations, even 
simple (i.e. non-smart first-order) upwind treatments of the convective terms offer a more faithful 
representation of the flow physics than do central-weighted schemes. This occurs in boundary 
layer flows, for example, in which the streamwise diffusive transport is entirely negligible and the 
velocity vector is nearly aligned with one of the co-ordinate axes. Another situation occurs in 
inviscid transonic flow calculations, for which physically unrealistic expansion shocks can be 
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avoided by introducing an upwind bias to the convective mass transport in the supersonic zone.“ 
Of course in any of these situations the mesh must be properly designed to capture the steep 
gradients of the flow variables. 

Notwithstanding the aforestated examples, there are classes of flows (most notably those with 
recirculation) for which the numerical diffusion introduced by upwinding is too great to be 
tolerated, and efforts are being made to improve them. Particularly attractive are the ‘smart 
upwind’ schemes which produce solutions to discretized flow problems which agree with the exact 
solutions for simple (most notably one-dimensional) transport problems. For a discussion of 
these, see Gresho and Lee.g Our scheme has this property as well, but we have extended it to the 
treatment of two-dimensional flows in a manner which has not previously been proposed. 

We now turn to a discussion of the test problem used in the present study. As mentioned 
previously, a numerical steady state bench-mark solution exists for this buoyancy-induced cavity 
flow of air (Prandtl number 0.71) in a square cavity.’ Furthermore, a large body of results for this 
problem, as obtained using a variety of numerical techniques, can be found in the comparison 
study by de Vahl Davis and Jones.” Results for this test problem continue to appear (and will 
probably do so for some time) as new techniques are developed for solving the Navier-Stokes 
equations (see e.g. References 13 and 14). 

All of the aforementioned studies are concerned with solving the steady state equations of 
motion. There are two studies known to the authors which consider the unsteady flow devel- 
opment for this test problem. These were made by Kublbeck et al. ls  and Gresho et ~ 1 . ’ ~  In the 
first of these studies a vorticity-streamfunction formulation was used. Results were presented for 
two values of the fluid Prandtl number (characteristic of air and water) but only one value of the 
Grashoff modulus (2 x lo4). In the study by Gresho et a Galerkin finite element method was 
used and results were given for a Prandtl number of 1.0 and a Rayleigh modulus of 10’. Both 
studies report transient as well as steady state results. However, in neither study were the physical 
parameters the same as those used in References 2 and 12 (which appeared several years later) and 
on which the present study is based. 

The present finite volume approach is applied to the vorticity-velocity formulation in which 
the velocity field is obtained from the (integral) velocity induction law. Up to the present time this 
formulation has been used by Kinney and co-workers only to  investigate unsteady external flows 
using a control volume approach. The results of the most recent investigation can be found in the 
paper by Hung and Kinney.” The current investigation is the first time it has been applied to an 
unsteady internal flow. 

ANALYSIS 

The analysis is developed for the Cartesian co-ordinate system. The fluid is taken to be viscous 
and incompressible and is confined to a closed cavity. We assume that the flow is two- 
dimensional and unsteady. The working equations are developed for the special case of a square 
cavity, but i t  is a simple matter to apply the procedures to any rectangular cavity. 

The fluid motion is induced by buoyancy effects (i.e. body forces). The vertical walls of the 
cavity are at different temperatures and the top and bottom surfaces are insulated. 

Governing equations 

We make use of the well known Boussinesq approximation, a very good account of which is 
given by Gebhart.I8 The momentum equations are combined into a single equation which 
governs the transport of the vorticity of the fluid. To this we couple the continuity and energy 
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equations. The conservation equations for mass, energy and vorticity may thus be written 
respectively as 

au aU 
ax ay - + - = o ,  

ae a a a 2 e  a 2 e  
- + --(I&) + -(UO) = - + - 
at ax aY ax2 ay2’  

am a a ae 
at ax aY ax - + -(urn) + -(ow) = RaPr- + Pr( $ + $). (3) 

In the foregoing, Pr = v/a is the Prandtl number and Ra = gb(Th - Tc)L3/vct is the Rayleigh 
number, with L the cavity dimension. The thermal diffusivity is a, the kinematic viscosity is v and 
/3 is the isobaric coefficient of thermal expansion. The hot and cold temperatures of the cavity 
walls are given by T, and T, respectively. Except for the temperature, all of the variables have been 
rendered dimensionless with L and a. The local velocities, then, are similar to local Peclet 
numbers since they have been divided by a/L. The time variable has been divided by Lz/a, etc. The 
temperature variable is given by 6’ = ( T  - Tavg)/(Th - Tc), where 7& = 05(T’ + T‘.). 

A common approach is to eliminate the continuity equation from further consideration by 
introducing the streamfunction. We pursue an alternative scheme, and to the above equations we 
add the integral velocity induction law, which is 

This is the general solution (in two dimensions) to the equation curlV = w.17 From this point 
onwards we will deal only with the scalar magnitude of the vorticity since the vorticity vector has 
only one component perpendicular to the plane of flow. The term grad4 in(4) is a purely 
irrotational contribution to the velocity field and must be added to ensure that the velocity 
boundary conditions are satisfied. It may be thought of as the velocity field due to image 
vorticity.” In this study we consider that the vorticity wo of (4) is located in the square cavity. 
The image vorticity is located outside the cavity and induces a purely irrotational velocity field at  

Figure 1. Diagram of image system for free vorticity distribution in the vicinity of the cavity 
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point P inside it. It is understood that in what follows, the contribution of the image field is 
included in the expression for the induced velocity so that grad 4 may be omitted from (4). 

The construction of the image vorticity field is straightforward but somewhat tedious. The 
steps have been carried out in detail in the dissertation” on which this paper is based. We give 
here only a summary of the steps involved. 

The superposition principle is used along with results which can be obtained from classical 
potential flow theory. One first locates a point 0 inside the cavity. Images of the cavity are drawn 
which produce a ‘checker-board’ pattern, and image points to 0 are located within them. There 
are in general an infinite number of image points. A portion of the image field near the cavity is 
shown in Figure 1. The velocity induced at point P inside the cavity by a differential element of 
the principle vorticity (i.e. K = odA) at point 0 and all its images is next evaluated. This involves 
a double infinite sum, one for the horizontal and one for the vertical direction. The infinite sum in 
the horizontal direction can be evaluated in closed form and involves hyberbolic trigonometric 
functions. The infinite sum in the vertical direction cannot be reduced to a closed form. As a last 
step we multiply the expression by the elemental vorticity odA and integrate over the cavity. 

In order to make these results more general, they are stated here for a general rectangular 
cavity in which W is the width and H is the height. For the horizontal and vertical velocity 
components we obtain respectively 

In the foregoing, K, and K,, are geometric kernel functions. We let the spatial variables x and y 
denote the co-ordinates of the point P, and < and q denote the co-ordinates of the point 0. The 
kernel functions are given by 

1 sinh(r,) cosh(r,) sinh(r,) cosh(r,) sinh(r,) cosh(r,) 
2a sin’(r,) + sinh’(r,) 

sinh(r,) cosh(r,) 

K - --[ - 
sin’@,) + sinh2(r3) + sin’(r,) + sinh’(r,) 

sinh(r,) cosh(r,) sinh(r,) cosh(r,) 

I -  

- - 
sin’(r,) + sinh’(r,) + sin2(r,) + sinh’(r,) sin’(r,) + sinh2(r,) 

sinh(r,) cosh(r,) sinh(r,) cosh(r,) sinh(r,) cosh(r,) - 
+ sin’(r,) + sinh’(r,) sin’(r,) + sinh’(r,) + sin’(r,) + sinh’(r,) 

sinh(r,) cosh(r,) sinh(r,) cosh(r,) sinh(r,) cosh(r,) - - 

sin’(r,) + sinh’(r,) + sin’(r,) + sinh2(r,) sin’(r,) + sinh2(r,) 

K , , =  --[ 1 sin(r,) cos(r,) sin(r,) cos(r,) sin@,) cos(r,) + .  
sin(r,) cos(r,) - sin(r,) cos(r,) 

- 
2a sin’(r,) + sinh’(r,) sin’(r,) + sinh’(r,) sin2(r1) + sinh’(r,) 

sin(r,) cos(r,) sin(r,) cos(r,) 

sin@,) cos(r,) 

+ .  

sin(r,) cos(r,) 

sin(r,) cos(r,) 

sin(r,) cos(r,) sin(r,) cos(r,) 

- 
sin’(r,) + sinh2(r4) + sin’(r,) + sinh’(r,) sin’(r,) + sinh’(r,) 

- + .  
sln’(r,) + sinhZ(r6) sin’(r,) + sinh’(r,) sin2(r2) + sinh2(r,) 

sin’(r,) + sinh’(r,) sin’(r,) + sinh2(r,) sin’(r,) + sinh’(r,) 
- + .  - 

(7) 
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The quantities ri ,  i = 1 ,  . . . , 8, are as follows: 

where P,  = 2nH - q, P2 = 2nH + q and a = 2 W. To apply these results to the present study we 
set W = H = L = l .  

It may be shown that the foregoing expressions for u and u will yield zero components of 
velocity perpendicular to the cavity walls. However, the tangential component will not necessarily 
be zero. Since we need to enforce the viscous adherence condition, a tangential ‘slip’ velocity 
cannot be tolerated. This is reduced to zero in the calculations by the proper production of 
vorticity at the solid boundaries. This is in keeping with the concept originally proposed by 
Lighthill19 and used previously by Kinney and co-workers. See Reference 17 for citations to these 
works. The vorticity production algorithm involves the numerical boundary condition for the 
vorticity transport equation. This will be discussed in the section dealing with the numerical 
methods. 

The air is initially at rest and has uniform temperature. Thus the initial conditions imposed on 
the aforestated governing equations require that o(x,  y, 0) = e(x, y, 0) = 0. For t > 0 we have for 
the boundary conditions: 

e(o, y ,  t )  = 0.5, q i ,  y, t )  = -05  and (ae/ay)(x,o, t )  = (ae/ay)(x, 1, t )  = 0. 

The boundary conditions on the velocity and vorticity have been discussed in the previous 
paragraph. 

Nusselt number 

In order to characterize the heat transfer results, we use a pseudo-heat flux which is defined to 
be the sum of the enthalpy transport plus the molecular conduction. The x-component of this 
heat flux is given by 

aT 
Q,  = pC,u(T - zvg) - k-. ax 

Here p is the fluid density, C, is the specific heat at  constant pressure and k is the thermal 
conductivity. Also Kvg is the reference temperature for the enthalpy. The heat transfer coefficient 
h^is defined in terms of Q, anywhere in the fluid, and not just its value at the hot or cold surfaces. 
This is in keeping with the definition used in References 2 and 12, but it does depart from the 
usual convention. That is, h  ̂= Q,/(T, - T,). We now introduce dimensionless variables as 
previously defined, as well as the Nusselt number N u .  Thus 
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In order to obtain results comparable to those reported in Reference 2, and preserving 
essentially the same notion, we introduce values for N u ,  evaluated at any vertical plane within the 
cavity. That is, 

N u ,  = fd ( u 0  - g ) d y .  

Specific results of interest are Nu, and NuI,,, where in (12) we use x = 0 and 0.5 respectively. 
Finally, a spatial average for the Nusselt number over the whole cavity is given by 

We note in passing that since the top and bottom surfaces of the cavity are insulated, 
the integrated Nusselt number along any vertical plane spanning the cavity must be the same for 
each x. In particular, N u ,  = Nu, , , .  It follows that Nu must equal these same values as well. 

Conservation law for total vorticity 

We next introduce an integral conservation law for the total vorticity. To the authors' 
knowledge, this law has not previously been derived for this cavity problem. It can be obtained by 
integrating the momentum equations around the closed contour which is coincident with the 
walls of the cavity. The continuity equation is also used to eliminate some of the terms. Since the 
pressure term is an exact differential, the integral of it must vanish for any closed contour. Also 
the enforcement of the viscous adherence condition ensures that the unsteady momentum terms 
vanish on the contour. The body force term in the y-component of the momentum equation is 
written - pg. The density may be considered to be a variable. That is, it is not necessary to 
invoke the Boussinesq approximation. However, the dynamic viscosity of the fluid, p, is taken to 
be a constant. 

As was the case previously, we state the results for a rectangular cavity of width Wand height 
H .  Also dimensional quantities are used. The result is 

am 
aY + p low ( $(x, 0, t )  - -(x, H, t )  

Note that the foregoing expression is valid for unsteady flows. 
We next invoke the Boussinesq approximation and write 

p(O,y,t) - ~ ( W , y , t )  = - p*b(T(O,y , t )  - T(W,y,t)) = - p*I)(T, - T'.) = constant. (15) 
Note that p* is a reference density which is considered to be constant. We simply write this now as 
p. The final step is to non-dimensionalize the variables in the manner previously noted. We also 
set W = H = L and obtain 

This is the form of the conservation law for total vorticity to be used in this analysis. It states that 
the net surface production of positive vorticity of the four cavity walls must equal the net 
volumetric production of negative vorticity by the body forces. That is, the production of total 
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vorticity is zero. Since it starts out with value zero when the fluid is at rest, it remains zero for all 
time. This can be verified by integrating equation (3) over the whole cavity and making use of (16). 

Scaling parameter for the velocity and uorticity 

We seek a scaling factor for the dimensionless velocity and vorticity variables. The temperature 
variable is already properly scaled. It is reasonable to expect that these will be proportional to 
some power of the Rayleigh number. GebhartlB uses a simple but intuitive estimate to reason that 
the velocities should scale as Ra”,. This should also be true of the vorticity. Therefore we 
introduce the scaled variables u“ = u/(Ra)’12, 6 = u / ( R ~ ) ” ~  and & = w/(Ra)’l2. When these are 
introduced into equations (1H3) we obtain 

We note here that the corresponding terms in these equations are all similar. In particular, the 
coefficients of the unsteady terms are l /Ra ,  the coefficients of the convective and buoyancy terms 
are 1/Ra112 and the coefficients of the diffusive terms are l /Ra .  This point will be exploited in the 
next section when the numerical methods are presented. Specifically, it will lead to a rationale for 
choosing the discrete time and distance steps for various Rayleigh numbers. 

NUMERICAL METHODS 

We begin with the governing equations (1H3). All terms are transposed to the left-hand side, 
following which they are integrated over a typical control volume. This will be taken to lie in the 
region given by x1 I x I x2 and y ,  I y I y , .  Note that the convective transport terms are all 
written in the so-called ‘conservative’ or ‘divergence’ form. That is also true of the diffusive terms. 
Thus these terms produce integrals over the boundaries of the control volumes. Following the 
spatial integration, equations (2)  and (3) are integrated with respect to time from t to t + At. Both 
of these operations produce exact expressions. We thus obtain 
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= 0. (22)  

We have adopted the following notation: [. . .](x, y, t) means that all quantities inside the 
square brackets have the argument (x, y, t ) .  To proceed further, some level of approximation must 
be made, and to this end we apply the finite volume formulation described in the next section. 

Finite volume formulation 

The basic approach has already been described in Reference 1 and some of the derived 
expressions carry over directly to the present work. Complete derivations are given in 
Reference 20. 

A typical mesh for the square cavity is shown in Figure 2. In this illustration the volume points 
are not shown, but away from the boundaries of the cavity these would appear at the centres of 
squares defined by the dotted lines of the mesh. On the cavity boundaries they would be midway 
between mesh lines. There are also volume points at the four corners of the cavity. A 21 x 21 
mesh is shown. The dimension of each square control volume is h on a side. Thus h is also the 
distance between volume points. 

A typical finite volume with the nodal arrangement is shown in Figure 3. The volume points at 
which the temperature and vorticity are evaluated are shown as 'x 's  inside circles and are 
numbered 1-9 (also i - 1, j - 1 to i + 1, j + 1) for easy reference. The mesh points at which the 
horizontal velocity components are evaluated are shown as '+'s inside squares, and those at 

. . , . . . , . . . . , . ,  , . . , . , . . .  .) 

0.0 1 .o 
DISTANCE, x 

Figure 2. Diagram of the 21 x 21 mesh configuration for the cavity, h = 0.05 
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I I 
7 u c  I 8 Uf I 9 

I I 

Q --B) Q - @  Q 
i , j t ~  I i + l . j t l  i-1, jt I 1 

I 

I-1,j-I ; i , j - I  I 
I I 

X ' X I  x = x 2  
- h 1  

Figure 3. Diagram of control volume showing node point arrangement 

which the vertical velocity are evaluated are shown as open circles. The control volume is 
bounded by co-ordinate lines xl, x,, y ,  and y , .  

The temperature and vorticity variables are approximated by biquadratic interpolation 
functions as follows: 

a 

The horizontal velocity component is approximated by a simple quadratic function as follows: 

where n = 1,2  and N k ,  N ,  are given in Reference 1. The vertical velocity component is evaluated 
using a different procedure and will be described subsequently. 

These expressions are next substituted into equations (20H22) and the integrations are carried 
out. The pertinent results are given in the next sections. 

We note here that the basic formulation is not dependent on the specific approach used to 
determine the velocity field. It is only required that the horizontal components of velocity be 
evaluated at the mesh points, as described above. Thus, for example, a stream function formula- 
tion could also be used, but for consistency it would be necessary to develop it along the lines 
presented here. 

Continuity equation 

In the convective transport algorithm, to be described later, the volumetric flow rates across the 
faces of the control volume are needed. These are found by the procedure already described in 
Reference 1, which will only be summarized here. 

The horizontal components of velocity at each mesh point are first evaluated from equation (5 ) .  
These are then interpolated by quadratic formulae and the volumetric flow rates across vertical 
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faces of the control volumes are found by integration. The volumetric flow rates across horizontal 
faces of the control volume are found by enforcing conservation of mass. One begins at the 
bottom of the cavity and marches in the vertical direction, ending at  the top. 

There are, however, two situations in which the vertical velocity components themselves are 
needed, for which equation (6)  is used. These are used to construct the velocity profile at the 
horizontal midplane of the cavity and to find the 'slip' velocities along the vertical walls of the 
cavity. The latter appears in the numerical boundary condition for the vorticity transport 
equation and will be discussed subsequently. The numerical procedure used to evaluate ( 5 )  and (6) 
will be discussed in a later section. 

We denote by k , j ( x 2 ,  t )  the volumetric flow rate across the right-hand vertical face. The 
subscript i, j refers to the node on which the control volume is centred, and the argument denotes 
the plane across which the fluid is passing. Thus C, j ( y l ,  t )  is the volumetric flow rate across the 
lower horizontal face of the same control volume. 

Note that this procedure ensures mass flux consistency plus local conservation of mass. 
However, it does not guarantee that the volumetric flow rate across the impermeable top of the 
cavity is zero. Nevertheless, this quantity was checked during the course of the computations and 
found to be negligibly small (i.e. O(10-6)). 

As an alternative to the present procedure, one could use both equations (5 )  and (6) to evaluate 
respectively the horizontal and vertical components of velocity at mesh points on the sides of the 
control volumes, following which the volumetric flow rates could be found by integration. 
However, there is no guarantee that mass will be conserved locally on the descrete mesh, since 
several levels of approximation are used in evaluating (5 )  and (6)  and the subsequent integrations. 
It can be shown that the integral velocity formulation does produce an exactly solenoidal velocity 
field, but only in the limit of a vanishingly small control volume. Although the continuity errors 
might be acceptably small on a fine mesh, the present procedure is preferrable because it is 
computationally more efficient and does ensure local mass conservation on even a coarse mesh. 

Vorticity transport equation 

Except for the buoyancy term in equation (3), the vorticity transport and energy equations are 
identical. Therefore the general discussion will be limited to the terms in the former equation only. 
A few special considerations needed in treating the energy equation will be discussed in a later 
section. 

Storage term. The storage term is described first. We have for an interior control volume the 
result 

h2 
576 - (0: + 220: + 0: + 220: + 4840; + 220: + O: + 220; + o;). (26) 

We use the notation that ok(t + At)  = I$, k = 1,. . . ,9. The result for time level t is the same as 
that given above with the '+' omitted from the vorticity terms. 

Since the values of the vorticity at all volume points residing on the cavity boundary are not 
known a priori, they are found from the governing transport equation applied to these control 
volumes. Thus terms analogous to (26) must be evaluated. However, cognizance must be taken of 
the fact that the dimensions of the relevant control volumes are no longer h x h. The various 
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results are too numerous to give here, and the reader is referred to Reference 20 for detailed 
listings of these. This will be the case for all the transport terms to be considered in this section 
which apply to control volumes adjacent to the boundary. 

Difusive terms. The diffusive terms are evaluated next. These, as well as all the remaining 
terms, involve integrals over the surfaces of the control volumes as well as over the time interval t 
to t + At. The spatial integration is carried out in closed form but the temporal integration is 
approximated using the trapezoidal rule. This has a truncation error O(At3). The total of the 
diffusion transport terms in equation (22) is 

At  1 
= P r - - [ 4 8 ( o +  + w ) ~  + 480(w+ + o ) ~  + 48(m+ + w ) ~  + 480(w+ + o ) ~  

2 576 

- 2112(0+ + w ) ~  + 480(w+ + + 48(w+ + o ) ~  + 480(w+ + m)* + 48(w+ + w)~] .  
(27) 

Note that the use of biquadratic interpolation formulae ensures that there is diffusive flux 
consistency on a uniform mesh such as that used in the present study. 

Buoyancy term. We next turn to the consideration of the buoyancy term. For any interior 
control volume the total buoyancy term is 

RaPrj;+"( j ~ ~ ( e ( x 2 , y , I ) - e ( x l , y , t ) ) d y  dt = RaPr---[- At h 12(e+ + e l ,  + 12(e+ +e l ,  
2 576 

Convective terms. The convective terms are discussed next. This involves a special 'upstream- 
weighted' scheme. The idea is to equate the convective transport to the product of the volumetric 
flow rate and a specially defined volumetric average of the vorticity. We have, for example, 

For the convective transport in the vertical direction we have 

Observe that the velocities u as well as the volumetric flow rates in the vertical direction are 
evaluated at time level t. The vorticity values are evaluated at two time levels, t and t + At. This 
mixed-time-level scheme avoids a non-linearity in the discretized vorticity transport equation. 
However, this is at  the expense of a larger-order truncation error in the convective terms than 
would be the case if a true trapezoidal rule were used for the time integration. 
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The quantity c? is the volumetric average of the vorticity crossing the control surfaces. It is 
defined over a trapezoidal region which adjoins a control volume at one of the surfaces. An 
illustration of this is given by the cross-hatched region in Figure 4. The width of the trapezoid is a 
factor DOPI times h. 

The algorithm for determining Dop, is derived from consideration of a steady state one- 
dimensional convection-diffusion problem on a domain with specified endpoint values of the 
dependent variable. It is a function of the cell Peclet number Pe,,, evaluated at the centres of the 
four faces of the control volume shown in Figure 3. There are thus four values of the cell Peclet 
number. For dimensional values of the velocities and spatial increment these are given by u,h/a, 
u,h/u, v,h/a and u,h/a. Note that here we use 0, = ( l /h)c , j (yl ,  t )  and vq = ( l /h)c , j (yz,  t) .  The 
four different values for Dopt are then determined from 

Pe, 2 
DOPI = coth- - -. 

2 Pe, 

The foregoing expression is a convenient algorithm for determining the ‘optimum’ distance factor. 
It has the advantage that it varies locally with the strength of the convection. Therefore it adjusts 
automatically to the evolving flow conditions and needs no analyst intervention during the course 
of the calculations. Other algorithms could conceivably be envisioned, but it is the only one 
considered in this study. 

Discrete form of the vorticity transport equation 

All of the terms described in the preceding sections are substituted into equation (22). After 
rearrangement we obtain, for a nine-node stencil centred on an interior control volume, the linear 
equation 

0: (C1 - 48C2) + 0; (22C1 - 480C2) + 0: (C1 - 48Cz) + 0: (22C1 - 480Cz) 

+ W: (484Cl + 2112C2) +  sf (22C1 - 480Cz) + 0: ( C ,  - 48C2) + oS+ (22C1 - 480C2) 

At 
+ w , + ( c ~  - 4 8 ~ ~ )  + y ( ~ h + ~ ( ~ t ) l i ; : , j ( x z ,  t ) -  ~&+1(~1)li;:,j(x1? t) 

+ [ ~ + I ( Y Z ) C , ~ ( Y Z ~  t )  - [d+1(~1)Cj(~1, t ) )  

= 01(C1 + 48Cz) + 02(22C1 + 480C2) + wJ(C1 + 48Cz) 

+ w,(22C1 + 480C,) + 0,(484C1 - 21 12C2) + w6(22C, + 480Cz) 

+ w,(C, + 48C2) + wB(22C1 + 480Cz) + ~ 9 ( C 1  + 48Cz) 

At C, 
2 h  

+ RaPr- - [ - 12(e+ + e), + 12(e+ + e), - 264(e+ + e), 

+ 264(e+ + e)6 - 12(e+ + el, + 12(e+ + e ) ~ ,  (32) 
where C ,  =‘h2/576 and Cz = AtPrll152. 

Observe that the volume-averaged vorticities transported by the flow (i.e. 61) are shown 
separately. These contain values of the vorticity evaluated at the nine nodes surrounding the 
control volume. However, the values of the coefficients are not known a priori since they depend 
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Figure 4. Trapezoidal region over which volume average of convected property is computed 

on the local flow trajectories and the strength of the convection. These coefficients have to be 
evaluated during the course of the calculations and then assembled with those of the other terms 
in the equation. 

Equation (32) must be modified for control volumes which lie adjacent to the cavity wall. This 
is because the vorticity production at solid surfaces, which arises through enforcement of the 
viscous adherence condition, has not been accounted for. We illustrate the procedure here for 
only one control volume. Reference 20 contains a full discussion of the required modifications for 
ail the affected equations. 

The numerical model for vorticity production at a solid wall is given by 

where s denotes a generalized co-ordinate on the wall. Background discussion pertaining to the 
origin of this model is contained in Reference 17. 

Vorticity production at the walls only affects the diffusive transport terms. In this example we 
consider a control volume which is adjacent to the bottom surface of the cavity. We begin with the 
left-hand side of equation (27) and interchange the order of integration for the term which 
represents the diffusive flow across the surface y,. Thus the total of the four diffusive terms 
become 

At 1 
2 576 

= Pr--[l68(of + w ) ~  - 912(0+ + w), + 168(0+ + w ) ~  + 144(0+ + 4 4  

+ 288(0+ + 0)s + 144(0+ + ~ ) 6  - 2 4 ( ~ +  + o), + 48(0+ + 0 ) s  - 24(0+ + 0)9] 

(34) 

In evaluating the integrals we have set y, = 0, y2 = hJ2, x1 = hJ2 and x2 = 3h/2. 
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We next substitute (33) into the above equation and note that the normal to the surface is in the 
y-direction. Also the positive ambiguous sign in (33) is chosen since a positive 'slip' velocity 
produces negative free vorticity at the wall. Thus ao/dy,  which represents the flux of this newly 
created vorticity, is positive at the wall. 

The remaining transport terms must also be modified because of the changed limits of 
integration. The final equation is given by 

w:(8C, - 168C2) + w;(176C1 + 912C2) + o:(8C, - 168C2) + w:(5C1 - 144c2) 

+ w:(1 10Cl - 288C,) + 06+(5C1 - 144C,) + o:( - C, + 24C2) 

+ wJ( - 22C, - 48C,) + w;(  - C, + 24C,) + [h+](x2)c,,,(;, t )  
At [ 

At C, 
2 h  

+ RaPr-- [ - 96(e+ + O), + 96(e+ + e), - 60(e+ + e), 

where 

(35) 

(36) 

Note that the values of C, and C, have been given previously. 

Energy equation 

For control volumes away from the cavity walls the evaluation of all the transport terms in the 
energy equation follows the procedure given above for the vorticity transport equation. However, 
at the cavity walls the boundary conditions are of a different form. The temperature values for 
node points on the left- and right-hand vertical walls are assigned the values + 0.5 and - 0.5 
respectively. For the top and bottom surfaces there is no heat flow. Therefore the normal 
derivatives are zero there but the temperatures still need to be determined along these surfaces. 
The modification required for control volumes on the lower boundary, for example, parallels that 
given in equation (34). However, the last term is zero. 

Evaluation of the velocity je ld  

The horizontal components of velocity are evaluated at each point on the vertical surfaces of 
control volumes from equation (5).  Only the distribution of vertical components of velocity along 
the horizontal midplane of the cavity is evaluated from equation (6) at the steady state condition. 
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Equation (6) is also used to evaluate the ‘slip’ velocities along the vertical walls of the cavity. In 
each case the numerical procedure is the same. 

The velocity components are written as double finite sums of individual contributions as 
follows: 

where N X  and N Y  denote the number of control volumes in the horizontal and vertical 
directions. In this study N X  = N Y = N since the cavity is square and the mesh is uniform. The 
terms Aui, and Aui, are the velocity components induced by the free vorticity in the control 
volume of cross-sectional area AAi ,  j .  They can be expressed in exact form by 

At this point we introduce the simplifying assumption that o(<, q, t )  is uniform over te area of 
the control volume. We take this to be the volume average of the vorticity, ( ~ ( t ) ) ~ , ~ ,  the 
expression for which is given by the right-hand side of equation (26) with the ‘ + ’ omitted from 
the vorticity values. Then the vorticity can be factored out in front of the integrals in (39) and (40). 
Following this step, the integrations of (39) with respect to q and (40) with respect to < can be 
carried out exactly in closed form. The final results are in the form of an average vorticity 
multiplied by a coefficient which is only a function of the mesh geometry. That is, 

where, 
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sin2[(n/a)(x + t2)] + sinh’[(n/a)(y - 2nH + q)]  
- In + In 

sin’[(n/a)x + C 1 ) 3  + sinh’“(n/a)(y - 2nH T-q)] 
sin’[(n/a)(x + t 2 ) ]  + sinh2[(n/a)(y + 2nH - q ) ]  
sin’[(n/a)(x + t , i  + sinh%n/a)(y + 2nH - q ) ]  

sin’[(n/a)x - 5 ’ ) ]  + sinh’[(n/a)(y + 2nH - q ) ]  
sin’[(x/o)x - 5 , ) ]  + s;h’[(&)(y + 2nH - q ) ]  

sin’[(n/a)(x - t,)] + sinh’[(n/a)(y - 2nH + q ) ]  
sin’[(n/a)(x - t,)] + sinh’[(n/a)(y - 2nH + q , ) ]  

sin2[(n/a)(x + tz)3 + sinh2C(n/o)(y - 2nH + q ) ]  
sin’[(n/a)(x + t1)3 + sinh2[(n/a)(y - 2nH + q ) ]  

,ns~n2[(n/a)(x + t2)] + sinh2[(n/a)y + 2nH - q ) ]  
sin2[(n/a)(x + t , ) ]  + sinh’[(n/a)y + m- q f i  

+ In -In - 

~~ + In-- 

sin’[(n/a)(x - t2)] + sinh’[(n/a)(y + 2nH - q ) ]  
sin’[(n/a)(x - t,)]> sinh’[(n/a)(y + 2nH - q ) ]  

-In- (44) 

The final integrations with respect to 5 and q are carried out numerically using an eight-point 
Gauss quadrature formula. In practice it is found that the series can be truncated beyond n = 8. 
This is sufficient to fix the velocity to within 12 significant figures. 

Nusselt number 

The Nusselt number expressions given by equations (12) and (13) are evaluated only after a 
steady state solution has been attained. The biquadratic interpolation formulae are used to 
represent 6 over the domain. Values of t3 and de/ax are next evaluated at the volume points of the 
mesh. Values for u are also needed at these points and are computed from(41). A quadratic 
formula is used to interpolate these values between volume points. When these expressions are 
substituted into (12) and (13) and the integrations are carried out, it is equivalent to using a central 
difference formula for a6/ax and Simpson’s rule for the integrations. 

Two other results are of interest. These are the maximum and minimum values of the Nusselt 
number along the left-hand vertical wall of the cavity (i.e. at x = 0). To find these, the four 
adjacent points to that at which the extreme values of N u  occur are identified. Then a fourth- 
degree polynomial is passed through the five points. This polynomial is then differentiated and set 
equal to zero. The values of y at which the slopes vanish are next determined by solving the cubic 
equation numerically using the secant method. These values of y are finally substituted into the 
polynomial in order to find the values of the extrema. This is the same procedure used in 
Reference 2. 

Conservation law for total vorticity 

The integral law for the conservation of total vorticity is given in equation (16). It has been 
specialized to two-dimensional flow in a square cavity. For the numerical evaluation of this 
equation we substitute the vorticity production model, equation (33), for the flux terms given by 

In order to interpret the ambiguous sign in (33), we invoke the ‘right-hand rule’. With the palm 
resting on the solid surface, the fingers of the right hand point in the direction of the ‘slip’ velocity, 
and the thumb points in the direction of the vorticity created by the (apparent) slip velocity. The 
created vorticity is considered to be positive if it points out of the plane of the flow. For positive 
vorticity production, awlan is negative, and vice versa. Here n denotes the normal direction 
drawn from the wall inwards towards the cavity. We now denote the slip velocity on the 

awlax or amlay. 
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horizontal and vertical walls respectively by uslip and uslip. Thus we obtain from (33) for suitably 
small At, 

am uslip(0. Y, t )  Pr-(0, y, t) N - 
ax At ’ (454 

Once these expressions are introduced into equation (16), one obtains 

The numerical integrations are carried out using Simpson’s rule. Special note is made of the fact 
that the mesh has quarter-size control volumes at the four corners of the cavity (see Figure 2). 
Therefore these regions are handled in a special way. The slip velocities are identically zero at the 
four corner points of the cavity. This is a consequence of the image system which has been 
adopted for the vorticity field. The slip velocities nearest the corners are evaluated at distances h/4 
away from the corners on each of the surfaces. The remaining slip velocities are evaluated midway 
between mesh lines. 

Choice of spatial and time increments 

The numerical calculations are carried out using different meshes, time increments and choices 
of the Rayleigh number. However, we hold P r  fixed at a value of 0.71. 

It is reasonable to expect that the choice of the time and spatial increments should be dictated 
in part by the Rayleigh number. In fact, the form of the governing equations for the scaled velocity 
and vorticity variables, given previously as equations (17)-(19), suggests that this is the case. 

Without regard to the specific discrete version of these equations, we simply examine the 
denominators of the equations and deduce from (17) that 

O[(RU)”~AX] = O[(Ra)’”Ay]. (47) 

(48) 

In a similar manner, from (18) and (19) we have 

OCRaAt] = O[(RU)”~AX] = O[(Ra)’/2Ay] = O [ R ~ ( A X ) ~ ]  = O[Ra(Ay)’]. 

Since P r  = O(1) we do not need to include this parameter in our estimates. 
Besides the obvious conclusion that A x  and Ay are the same order of magnitude, we see that 

O[(Ra)”2Ax] = O [ R ~ ( A X ) ~ ] .  Thus the latter two quantities must each be of order unity. This 
leads to the conclusion that 
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It also follows that 
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We will demonstrate by actual numerical experiment that these order-of-magnitude estimates 
are quite reliable. 

Computational procedure 

We conclude with a description of the computational procedure used to solve the equations in 
this section. All flow variables (velocity, vorticity and temperature) are initially zero. The 
temperatures of the hot and cold surfaces are changed spontaneously to their prescribed values 
and the energy equation is solved for the temperature throughout the fluid. During this stage of 
the calculation there is no convective transport of energy because the velocity variables are held 
fixed at zero. This temperature distribution is next used in the vorticity transport equation and 
the vorticity is found throughout the fluid, also in the absence of convection. There is no vorticity 
production at the walls during this first phase of the calculation. This is because t = 0 in 
equation (33 )  and the slip velocity is initially zero. Now that a vorticity field has been established, 
the x-component of velocity can be calculated from equation (41) and the vertical velocity 
components evaluated from the continuity equation. The last step is to calculate the ‘slip’ 
velocities on the boundary of the cavity. For the horizontal planes, (41) is used with y = 0 and 1. 
For the vertical boundaries, (42) is used with x = 0 and 1. These ‘slip’ velocities are used to 
determine the vorticity production at the walls during the next phase of the calculation. 

This completes one cycle of the calculation and the solution is now known at time level At, The 
procedure continues with the solution of the energy equation followed by the solution of the 
vorticity transport equation. During this phase of the calculation there is convective transport of 
energy and total vorticity and there is also vorticity production at the walls, as mentioned above. 
The last step is to determine the velocity field and the new ‘slip’ velocities at the boundaries, which 
quantities are used to advance the solution in the next phase of the calculation, and so on. 

RESULTS AND DISCUSSION 

Calculations have been carried out for three different Rayleigh numbers. These are Ra = lo3, lo4 
and lo5. Different meshes and time increments were also used. We make no claim here that the 
results are the best that one can achieve. In that sense these are not the ‘answers to the problem’. 
However, we will demonstrate that the finite volume algorithm with adaptive upwind convection 
produces very accurate results in the steady state, even on relatively coarse meshes. 

We use the bench-mark solution from Reference 2 to assess the accuracy of our steady state 
predictions. The bench-mark solution was obtained using a finite difference scheme which 
incorporates forward time and centred space derivatives. The method of false transients was 
employed in a vorticity-stream function formulation. In contrast, our results were obtained using 
a ‘time-accurate’ scheme and the vorticity-velocity formulation was used. This is not an efficient 
algorithm to use if one is only interested in a steady state solution. However, our main intent is to 
present transient results and these will be presented and discussed presently. 

Several numerical experiments have been performed in order to test the temporal convergence 
of the method as well as the utility of the order-of-magnitude estimates made for the time and 
spatial increments. These are given by equations (49) and (50). The results of the numerical 
experiments are presented in the next section. 
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Numerical experiments 

We first examine the effect of the time increment on the steady state solutions. We do this using 
11 x 11 and 21 x 21 meshes for R a  = lo3. These calculations can be performed relatively cheaply 
and the findings can be generalized to other meshes and values of Ra. 

It can be argued that if the transient scheme is stable and the solutions converge to a steady 
state, then the final solution should be independent of the time increment used. However, this will 
not necessarily be the case. Indeed, schemes which do produce different steady state solutions for 
different time increments can still be useful and cost-effective, even for steady flow simulations.2 

The effect of the time increment on the steady state results is illustrated in Figure 5. The 
predictions are shown for the scaled maximum velocities in the horizontal and vertical directions 
and the average Nusselt number. The results for the 11 x 11 mesh ( h  = A x  = A y  = 0.1) are 
represented by the circles. Five choices of the ratio At/Ax2 were used. These are 0.1,0.2,0.3,0.35 
and 0.4. For the 21 x 21 mesh ( h  = 0.05) the results are shown by the squares. Two values of 
At/Ax2 were used, namely 0.1 and 0.3. The bench-mark results are shown by the horizontal lines. 

It can be seen that the solution improves as the time increment is reduced. There is, in fact, first- 
order convergence in time. Note that extrapolation to a zero time increment does not produce the 
bench-mark result, but this is not surprising since the mesh is still relatively coarse. Clearly, the 
results for h = 0.05 are quite good for both choices of the time increment. That is, the results for 
the finer mesh show a weaker dependence on At than do those for the coarser mesh. It is expected 
that as the mesh is refined further there will be almost no dependence of the steady state solution 
on At provided A t / A x 2  = O(1). 

The reason that At affects the steady state solution can be traced to the numerical boundary 
condition, equation (33), imposed on the vorticity transport equation. For accurate simulations 
the time increment should be of the order of the diffusion time corresponding to the spatial 
increment near the wall.17 That is precisely the criterion given by equation (50). 
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Figure 5. Effect of time increment on convergence of steady state solution for two mesh sizes --0--, h = 0.1; -0-, 
h = 0.05; ---, bench-mark solution 
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The fact that the error in the solution shows a first-order dependence on At is believed to be 
caused by the mixed-time-level treatment of the convective transport terms. The use of the 
trapezoidal rule for the time integration of the diffusion and buoyancy terms has a truncation 
error O(At3).  We cannot estimate the truncation error for the convective terms because of the 
mixed-time-level scheme used. However, the results of Figure 5 suggest that it is close to O(At)  
since this is the overall accuracy of the time integration scheme. 

Another test of the results is provided by the conservation law for total vorticity. This has not 
been examined previosly for this problem but has been used in other test problems.* The form 
of the conservation law which is used here, and which is consistent with the Boussinesq 
approximation, is given by equation (46). This law states that the net dimensionless vorticity 
produced at all the solid boundaries must equal the RaPr product. The relative error can thus be 
found by dividing the right-hand side of (46) by this product and comparing the total term with 
zero. In these calculations RaPr = 710. 

The degree to which the conservation law for total vorticity is satisfied is shown in Figure 6. 
The error is expressed as a percentage and the symbols are the same as those used in Figure 5. It is 
clear that for either mesh the conservation law will be satisfied exactly as At -+ 0. Also the results 
for the finer mesh are only slightly better than those for the coarser mesh. 

From these tests we concludce that a good time step criterion is At/Ax2 = 0.1. We view this as 
slightly conservative, but the accuracy of the steady state results is entirely satisfactory when this 
criterion is used and we expect the accuracy of the transient solutions to be likewise satisfactory. 

Before turning to the transient results, it cannot escape notice that the steady state results 
shown in Figure 5 for h = 0.05 and At/Ax2 = 0.1 are essentially indistinguishable from the bench- 
mark solution for this small value of Ra = lo3. This should not be too surprising since in this case 
Ax(Ra)’” = 1.58. Thus the criterion given by equation (49) is essentially satisfied. This allows one 
to assess the relative coarseness of the mesh and we conclude that an 11 x 11 mesh is quite 
adequate for this small Rayleigh number. 

Transient results 

and vorticity variables have all been scaled by dividing these quantities by R u “ ~ .  
In what follows, a 21 x 21 mesh has been used exclusively and At/Ax2 = 0.1. Also the velocity 
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Figure 6. Effect of time increment on the error in the global conservation of total vorticity; --0--, h = 0.1; -O-, 
h = 0.05 
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We first demonstrate the approach to the steady state by showing the time variation of the 
vorticity at the centre of the cavity. The results for the three different values of Ra are shown in 
Figure 7. The calculations were ceased after the curves followed a horizontal asymptote for an 
appreciable length of time. It appears that the choice of the scaling factor (i.e. R u ” ~ )  is entirely 
appropriate for determining the order of magnitude of the vorticity. 

The study by Gresho et all6, which became known to the authors after the present work was 
completed, presents some transient results for this problem but for slightly different physical 
parameters, namely Pr = 1.0 and Ra = lo5. Whereas a direct comparison of results is not 
possible, the qualitative features of their temperature and our vorticity results are very similar. 
They plot the transient development of the temperature at a point on the midplane and three- 
quarters of the distance between the heated and cooled walls. The ‘valley-to-peak’ nature of the 
two curves is the same. Also their results show steady state behaviour after t = 0.15 whereas ours 
show this after t = 0.10. 

In the remainder of this section we present distributions of vorticity, temperature and velocity 
along different planes in the cavity and at different times. These are shown for the two extreme 
values of the Rayleigh modulus, namely Ra = lo3 and lo5. 

The distribution of vorticity across the horizontal midplane of the cavity is shown in Figures 8 
and 9 for the three different Rayleigh numbers and several time levels. Recall that the enforcement 
of the viscous adherence condition on the two vertical walls causes positive vorticity to be 
produced there. Moreover, the temperature gradient in the horizontal direction gives rise to a 
volumetric source of vorticity within the fluid. 

A negative temperature gradient produces negative vorticity, and vice versa. Since this gradient 
is negative in the thermal layers next to the heated and cooled vertical walls, it is not surprising 
that the negative vorticity produced by it eventually overwhelms the positive vorticity created at 
the walls, thus driving the fluid vorticity to negative values in these layers. However, for the larger 
Rayleigh number the vorticity increases again in the central part of the cavity. This is consistent 
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Figure 9. Distribution of scaled vorticity along the horizontal midplane of the cavity at several time levels, h=0.05 
and Ra = lo5 

with the shape of the corresponding temperature profiles for this horizontal midplane. These are 
shown in Figures 10 and 11. For Ra = lo5 the temperature gradient in the x-direction is positive 
during a substantial part of the transient development of the flow. This is sufficiently strong to 
cause the vorticity at the central point of the cavity to reach a momentary positive peak value at 
t z 0.05, as shown in Figure 7. 
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Figure 11. Distribution of temperature along the horizontal midplane of the cavity at several time levels, h = 0.05 and 
Ra = lo5 

The transient development of the horizontal component of velocity is depicted in Figures 12 
and 13. These profiles correspond to x = 0525 and not to the vertical midplane itself. This is a 
location which coincides with one of the mesh lines closest to the centre plane and it is only along 
these lines that the velocity is actually calculated. We could have chosen x = 0.475, but the two 
profiles are indistinguishable by eye. 
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Figure 12. Distribution of scaled horizontal velocity component near the vertical midplane of the cavity at several time 
levels, h = 0.05 and Ra = lo3 

Figure 13. Distribution of scaled horizontal velocity component near the vertical midplane of the cavity at several time 
levels, h = 0.05 and Ra = 10’ 
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In viewing all of these profiles it appears that 21 points are sufficient to define the curves for the 
smaller Rayleigh number. However, for Ra = lo5 more points should be used, or at least more 
points should be concentrated near the wall layers. For the largest value of Ra, Ax(Ra)’” = 15.8, 
which is no longer of order unity. Therefore we should suspect that the mesh is too coarse to 
resolve the fine details of the flow at this Rayleigh number. For Ra = lo4 this parameteris 5.0, 
which is more reasonable. Nevertheless, the mesh is probably only marginally adequate for this 
Rayleigh number. 

Steady state results 

Besides the bench-mark solution, de Vahl Davis2 presents tabulated results for several meshes 
and a range of Rayleigh numbers. Therefore we can compare our steady state results with those 
obtained by his method on the same mesh. We have used 11 x 11 and 21 x 21 meshes for the 
three choices of Rayleigh number given previously. These results are presented in Tables 1-111. 

Table I. Steady state results for Ra = lo3 

Present de Vahl Bench- Present de Vahl 
work Davis mark work Davis 

(11 x 11)  (11 x 11) (21 x 21) (21 x 21) 

uma,lRa1~2 0.1 126 0.1 084 01154 0.1154 0.1 135 
Y 0.810 0.801 0813 0.8 13 0.81 1 
uma, JRa1I2 0.1136 0.1091 0 1  169 0.1167 0.1 147 
x 0.183 0193 0178 0.179 0.181 
Nu 1.114 1.096 1.118 1.113 1.1 11 
N u , , ,  1.1 19 1.104 1.118 1.118 1.1 14 
Nu, 1.1 11 1.105 1.1 17 1.109 1.113 
NUmnx 1.497 1.462 1505 1-479 1.49 1 

Numi, 0.693 0.723 0692 0.715 0.702 
Y 0.099 0141 0.092 0.097 0.1 12 

Y 1 ~OOO 0.936 1 .Ooo 1 .Ooo 1 .Ooo 

Table 11. Steady state results for Ra = lo4 

Present de Vahl Bench- Present de Vahl 
work Davis mark work Davis 

(11 x 11) (11 x 11) (21 x 21) (21 x 21) 

0.16584 
0.817 
0.19096 
0.126 
2.294 
2.290 
2.252 
3.562 
0.155 
0.567 
1 ~Ooo 

0.16243 
0.808 
0.18055 
0.139 
2.171 
2.1 70 
2.307 
3.637 
0.21 1 
0.676 
1 ~OOO 

0.16178 0.1 62 52 
0.823 0.822 
0.196 17 0.19606 
0.119 0.120 
2.243 2.248 
2.243 2.243 
2.238 2.3 10 
3.528 3.680 
0.143 0.143 
0586 0.594 
1 ~OOO 1 .Ooo 

016189 
0.820 
0.19 197 
0.125 
2.2 12 
2.2 13 
2.255 
3.603 
0.165 
0.610 
1 .Ooo 
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Table 111. Steady state results for Ra = lo5 

de Vahl Present de Vahl Bench- Present 
work Davis mark work Davis 

( 1 1  x 1 1 )  ( 1 1  x 1 1 )  (21 x 21) (21 x 21) 

umax / R a  ‘ I 2  0.0962 0.1293 0.1098 01159 0.1153 
Y 0.844 0.846 0.855 0.855 0.854 
vmax /Ra  ’ 0-1889 0.1888 02169 0.2 124 0-1986 
X 0.07 1 0.083 0.066 0.069 0.075 
N u  4.369 4.446 4.519 4.576 4.454 

Nu0 4594 4.767 4.509 4.522 4.7 16 
Nu,,, 7.449 6.538 7.717 7.678 7.90 1 
Y 0048 0.2 18 0.08 1 0.095 0.133 
Numi, 0.719 1.516 0.729 0.7 10 0.797 

- 

Nu, , ,  4.300 4.381 4.519 4.559 4455 

Y 1 .000 1 .Ooo 1 ~Ooo 0.973 1 .Ooo 
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For the sake of brevity in our discussion we will refer to the results obtained from Reference 2 
simply as ‘dVD’. 

The quantities urnaxand urnaxare obtained from the velocity profiles along x = 0.5 and y = 0 5  
respectively. The values of Nu,,,and Numi, are found along x = 0. Referring to Table I, which 
corresponds to Ra = lo3, one sees that both sets of results for the 1 1  x 1 1  mesh are quite good. 
However, those obtained in the present study are marginally superior. There is a slight but still 
noticeable improvement when the mesh is refined to 21 x 21. In that instance the present 
predictions are in the most part indistinguishable from the bench-mark solution. There is only a 
slight discrepancy in the results for Nu,, Nu,,,and Numi,. Since these are already witin 2% of the 
bench-mark values, the agreement is deemed to be satisfactory. 

One would expect the accuracy of the predictions to deteriorate as the Rayleigh number is 
increased while keeping the mesh unchanged. This is not the case for the results obtained in the 
present study and shown in Table 11. We see that for the finer mesh the results are still in 
remarkably good agreement with’the bench-mark solution. Those of dVD are also quite 
satisfactory. However, we still believe that ours have a slight edge. 

We remarked earlier that the physics of the problem dictates that the values of Nu, Nu,,, and 
Nu, be the same. However, discretization errors will cause these to differ. Only Nu, shows an 
appreciable departure from the other two values. This is also true of the dVD results as well as the 
bench-mark solution. As pointed out by dVD, this is because the approximation used to calculate 
dO/dx at x = 0 is formally less accurate (by a factor of two) than the central difference 
approximation used away from the wall. We will return to a further discussion of these heat 
transfer results subsequently. 

The final tabulation of results for Ra = lo5 is shown in Table 111. Now it seems clear that the 
coarser mesh is inadequate for this case. Still, the present predictions seem slightly better than 
those of dVD. This is especially true of the Nusselt numbers. This same trend is found in the 
results for the finer mesh as well. 

We conclude this section by showing the variation of the Nusselt number across the cavity, as 
given by equation (12). This is shown in Figures 14-16 for the three values of the Rayleigh 
number. The horizontal dashed line is the computed value of Nu and only the results for the 
21 x 21 mesh are shown. Note that the scale on the abscissa is greatly expanded. In the absence 
of discretization errors, Nu, should be uniform and equal to Nu. 
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Figure 14. Comparison between the local and average Nusselt numbers in the cavity at steady state, h = 0.05 and 
Ra = lo' 

Figure 15. Comparison 
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For Ra = lo3 the variation from wall to centreline is less than 1% of the mean value. It is 
slightly greater than this for Ra = lo4. For Ra = lo5 the variation is of the order of 2%. This is 
considered to be remarkably good, especially since it is clear that a 21 x 21 mesh has difficulty 
resolving the sharp peaks and valleys evident in the distribution shown in Figure 16. 
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Figure 16. Comparison between the local and average Nusselt numbers in the cavity at steady state, h = 0.05 and 
Ra = lo5 

CONCLUDING REMARKS 

The new finite volume (FV) approach has been applied to an unsteady viscous flow problem with 
a substantial amount of complexities. The numerical predictions have been found to be quite 
good when compared with those obtained from Reference 2. In that study a finite difference (FD) 
scheme was used which incorporated second-order central differences for all space derivatives. 
Those FD solutions were then extrapolated to zero mesh size to obtain a numerical bench-mark 
solution. The predictions obtained with the present method were noticeably closer to the bench- 
mark solution than those obtained with the F D  scheme on the same mesh. This shows that our 
FV scheme does have merit and in fact has a spatial convergence rate comparable to the FD 
scheme. This is significant because it does make use of an upwind treatment of the convection 
terms. 

We have presented rational criteria for choosing time and spatial increments for the free 
convection problem which are independent of the particular discrete approximations used. 
According to these criteria, the time increment must be proportional to the diffusion time for the 
mesh, and the spatial increment must be proportional to the vorticity boundary layer thickness 
near the solid surfaces. This thickness is essentially the same as that for the thermal layer when the 
Prandtl number is near unity. Such was the case for the problem examined in the present study. 
This ensures that the regions of steep gradients can be resolved by the mesh. We strongly 
advocate that these criteria be observed, regardless of the numerical algorithm used, if physically 
meaningful solutions are to be obtained. 

It is our conclusion that the present FV method continues to show great promise. However, it is 
very evident that it is considerably more complex than the FD scheme used by de Vahl Davis.’ 
This introduces additional programming difficulties and increased central memory requirements. 
It would be premature to state categorically that this added expense is justified. Further testing 
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needs to be done before the full extent of the advantages and disadvantages of the present method 
can be known. 
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